■P値/V値/PV値の求め方

■P値/ V値/ PV値の来め方			
ブッシュ	P値 N/mm²	V値 m∕s	PV値 N/mm²·m/s
ラジアルジャーナル 一方向回転運動 - W	P= W	V= <mark>πφdn</mark> 10 ³ 回転数 n : s ⁻¹	PV= <mark>W×πφd n</mark> φd×L×10³ 荷 重 W:N
φd L	内 径 Ød: mm 長 さ L: mm	内 径 φd : mm	回転数 n : s ⁻¹ 長 さ L : mm 内 径 Φd : mm
	内径 20mm、長さ10mmの軸受、 1000N のジャーナル荷重の場合。	内径20mmの軸受、回転数2S-1の場合。	内径20mm、長さ10mmの軸受、回転数 2S ⁻¹ 、1000Nのジャーナル荷重の場合。
	<u>1000</u> =5 (N/mm²) 20×10 =5 (√mm²)	$\frac{\pi \times 20 \times 2}{10^3} = 0.126 \text{ (m/s)}$	P×V=5×0.126=0.63 (N/mm²·m/s) です。
揺動運動	$P = \frac{W}{\phi d \times L}$	$V = \frac{\pi \phi d \times \theta \times c}{10^3 \times 360}$	$PV = \frac{W \times \pi \phi d \times \theta \times c}{\phi d \times L \times 10^3 \times 360}$
ød L	荷 重 W : N {kgf} 内 径 Φd : mm 長 さ L : mm	揺動 c : s ⁻¹ サイクル数 C : s ⁻¹ ウイクル数 C : s ⁻¹ 内 径 φd : mm	荷 重 W:N サイクル数 c:s ⁻¹ 1サイクルあたりの揺動角度 & :° 長 さ L:mm 内 径 ød:mm
	計算例 内径20mm、長さ10mmの軸受、 1000Nのジャーナル荷重の場合。 1000 =5 (N/mm²)	内径 20mm、揺動サイクル数 3s ⁻¹ 、1サイクルあたりの揺動角度 180°の場合 π×20 × 180 ×3	内径 20mm、長さ10mmの軸受、1000Nのジャーナル荷重、揺動サイクル数 3s ⁻¹ 、1サイクルあたりの揺動角度180°の場合
	20×10 です。	1000 ~ 360 ~ 360 (m/s) (e/s) (e/s)	P×V=5×0.094=0.47(N/mm²·m/s) です。
往復運動	$P = \frac{W}{\phi d \times L}$	$V = \frac{cS}{10^3}$	$PV = \frac{W \times cS}{\phi d \times L \times 10^3}$
φď	荷 重W:N 内 径φd:mm 長 さL:mm	往復 C:S ⁻¹ サイクル数 C:S ⁻¹ 1サイクルあたりのストローク距離 S:mm	荷 重 W:N サイクル数 c:s ⁻¹ 1サイクルあたりのストローク距離 S:mm 内 径 ød:mm
	計算例	計算例 往復サイクル数 3s ⁻¹ 、1サイクルあた りのストローク距離 20mm の場合 2~20	計算例 内径 20mm、長さ10mmの軸受、1000N のジャーナル荷重、往復サイクル数 3s ⁻¹ 、1 ストロークあたりのストローク距離 20mm
	1000 =5 (N/mm²)	<u>3×20</u> =0.06 (m/s) ੁਰ੍ਹ	P×V=5×0.06=0.3(N/mm²·m/s) です。
ワッシャー	P値 N/mm²	V値m/s	PV値 N/mm²⋅m/s
スラスト運動	回転 $P = \frac{4W}{\pi \times (\phi D^2 - \phi d^2)}$	回転 V= ^{πφDn} 10 ³	回転 $PV = \frac{4W \times \phi D n}{(\phi D^2 - \phi d^2) \times 10^3}$
w	摇動 $P = \frac{4W}{\pi \times (\phi D^2 - \phi d^2)}$	揺動 V= <u>πφD×θ×c</u> 10 ³ ×360	揺動 $PV = \frac{4 W \times \pi \phi d \times \theta \times c}{\pi (\phi D^2 - \phi d^2) \times 10^3 \times 360}$
PØ QØ	荷 重W:N 内 径φd:mm 外 径φD:mm	回転数 n : s-1 サイクル数 c : s-1 1サイクルあたりの揺動角度 <i>θ</i> : ° 外 径 <i>Φ</i> D : mm	荷 重 W:N 回転数 n:s ⁻¹ サイクル数 c:s ⁻¹ 1サイクルあたりの揺動角度 <i>θ</i> :° 内 径 <i>φ</i> d:mm 外 径 <i>φ</i> D:mm
プレート	P値 N/mm²	V値 m/s	PV値 N/mm²·m/s
平面往復運動 W	$P = \frac{W}{B \times L}$	$V = \frac{cS}{10^3}$	$PV = \frac{W \times cS}{B \times L \times 10^3}$
	荷 重W:N 長 さ L:mm 幅 B:mm	サイクル数 c:s ⁻¹ 1サイクルあたりのストローク距離 S:mm	荷 重 W:N サイクル数 c:s ⁻¹ 1サイクルあたりのストローク距離 S:mm
L			長さL:mm 幅 B:mm